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Lattice dynamics on the Born-Oppenheimer surface

classical movement of atoms
in the electrostatic force field
from core charges
and relaxed electron density
(as an adiabatic process, different
from the Car-Parrinello approach!)

For phonons: treat the crystal
as a system of coupled oscillators,

H =
∑
α

Mα

2

3∑
i=1

(u̇iα)2 +
1
2

∑
αβ

3∑
i,j

F ijαβu
i
αu

j
β

Ways to get force constants,

F ijαβ =
∂2E

∂uiα∂u
j
β

:

1) frozen phonon schemes;
2) response theories.
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Lattice dynamics on the Born-Oppenheimer surface

A general case (cluster, molecule, aperiodic
crystal) yields 3N (N : number of atoms
in the system) coupled equations:

Mαü
i
α = −

N∑
β

3∑
j

F ijαβu
j
β

In case of translational invariancy,
Ansatz uα ∼ uq e

i(q rα−ωt)

and Fourier-transformation of force con-
stants decouple the equation in q,

Msü
i
sq = −

n∑
s′

3∑
j

F ijss′(q)ujs′q

yielding 3n (n: number of atoms per unit cell) coupled equations:
...

F ijss′(q)√
MsMs′

− ω2δss′δij

...




...

ujs′q
√
Ms′

...

 = 0

det(...)=0 ⇒ frequencies ω2 ; eigenvector/
√
M ⇒ displacement pattern
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Units of vibration frequencies

The vibration equations we want to solve have a form like

M ω2 u =
(
∂2E

∂u∂u

)
u

(omitting indices and possible “symmetrization” of force constant matrix).
Therefore, in what regards units, the frequency comes out as

[ω] =

√
1

[M ]

[
∂2E

∂u∂u

]
.

We’d like to have M in atomic mass units, 1.660599·10−27 kg, energy derivatives
– in “conventional” units of a DFT calculation, i.e., E in eV or Ry, and
displacements – in Å or Bohr. Assume for the following that the force constants
are in eV/Å2 (otherwise 1 Ry = 13.605692 eV; 1 Bohr = 0.529177 Å). The
above “frequency unit”, f.u., in the SI:

f.u. =

√
1 eV/Å2

1 a.m.u.
=

√√√√(1.602176487·10−19 J
10−20 m2

)
1.660599·10−27 kg

= 9.822517·1013 s−1 .
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Units of vibration frequencies: meV ⇔ THz ⇔ cm−1

• meV is the measure of energy of a phonon with 1 f.u.:

f.u.×~ = 9.822517·1013 s−1×1.054572·10−34 J · s = 1.035855·10−20 J

= 64.652976 meV .

• ν, expressed in THz, is ω/(2π):

f.u.

2π
= 15.6330214 THz .

• Inverse wavelength is found from hν = hc
λ

; 1
λ

= ω
2π·c .

f.u.

2π·c
=

9.822517·1013 s−1

2π·29979245800 cm/s
= 521.461464 cm−1 .

Units conversion:

1 THz = 4.136 meV = 33.356 cm−1;
1 meV = 0.242 THz = 8.066 cm−1;
1 cm−1 = 0.030 THz = 0.124 meV .
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Density Functional Theory: total energy

The Kohn-Sham equations:[
− ~2

2m
∇2 + VSCF(r)

]
ϕi(r) = εi ϕi(r) ;

VSCF(r) = e2
∑
α

−Zα
|r−Rα|

+ e2
∫

ρ(r′)
|r− r′|

dr′ +
δEXC

δρ(r)
;

ρ(r) =
∑
i

(occupied)

|ϕi(r)|2

Total energy:

E el.
tot =

∑
(i occupied)

εi −
e2

2

∫
ρ(r)ρ(r′)
|r− r′|

dr dr′ −
∫
VXC(r) ρ(r) dr + EXC[ρ] .
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Density Functional Theory: forces

For the exact wavefunction, E = 〈ψ|H|ψ〉, the Hellmann–Feynman
theorem yields:

Ea ≡ d

dRa
〈ψ|H|ψ〉 = 〈ψ|Ha|ψ〉 .

If the wavefunction contains parameters pt dependent on displacement of
ions, either implicitly or explicitly, the HF theorem is violated:

Ea ≡ d

dRa
〈ψ|H|ψ〉 = 〈ψ|Ha|ψ〉 +

∑
t

∂〈ψ|H|ψ〉
∂pt

pat ,

but it can be restored

if either ∀ pat = 0 (basis independent on the positions of nuclei),

or ∀∂ 〈ψ|H|ψ〉
∂ pt

= 0 , (the basis is complete).
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Density Functional Theory: forces

Forces: Fα ≡ −
dEtot

dRα
= FHF

α + FIBS
α + · · ·

FHF: Hellmann–Feynman force,

FIBS: “Pulay force”, accounts for the incompleteness of basis, and/or for
the dragging of basis functions with atoms (in tight-binding schemes).

Possibly futher terms, depending on practical realization.

A sufficiently good accuracy of forces is only achievable in “full-potential”
schemes, i.e. those not using shape approximations (like e.g. muffin-tin
approximation) for the potential and charge density.
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Practical calculation schemes within DFT

An expansion of the Kohn-Sham functions over (fixed or variable) basis set

ϕα(r) =
Q∑
p=1

Cαpχp(r) ;

yields a system of algebraic equations:∑
p

Cαp

[ ∫
χ∗q(r)Hχp(r)dr︸ ︷︷ ︸

Hqp

−εα
∫
χ∗q(r)χp(r) dr︸ ︷︷ ︸

Sqp

]
= 0

ρ(r) =
N∑
α=1

ϕ∗α(r)ϕα(r) =
∑
pq

[
N∑
α=1

C∗αq Cαp

]
︸ ︷︷ ︸

≡Dpq , density matrix

χ∗q(r)χp(r) .

→ a generalized diagonalization problem, to be solved iteratively.
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Technical implementations of DFT: planewave basis

(+) Ultimately complete basis; systematic augmentation of accuracy is
controlled by a single parameter (planewave cutoff);

(+) Easy analytical manipulation, e.g., when calculating matrix elements of
different observables, derivatives of the total energy etc.

(−) Boundary conditions can be only periodic ⇒ in the course of simulating
finite fragments “in the box” the spurious interactions across the box
boundary are built in, and their suppression may demand for a large box size.

(−) The number of plane waves necessary to describe fluctuations of all-electron
charge density is usually beyond the reasonable computational resources.
The use of pseudopotentials is de facto obligatory.

(−) For a given cutoff (i.e., the largest wavevector used in the planewave
expansion), the size of basis grows very rapidly with the size of simulation
cell, irrespectively on whether it contains extra atoms or not (the user pays
for the vacuum).
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Technical implementations of DFT: localized basis sets

(+) Since all charge is physically delivered by one-electron functions centered on
atoms, the basis size scales linearly with the number of atoms, irrespectively
of empty space in the system. Especially important for simulations of open
systems.

(+) Boundary conditions can be either periodic or strictly “vacuum-like”, with
no spurious interaction between repeated fragments.

(−) The lack of systematics in gradually enhancing the completeness of basis;
additional basis functions are added ad hoc, and no asymptotic
completeness of the basis is guaranteed.

(−) Difficulties in calculating matrix elements. This is probably the most serious
drawback that can be overcome by the following tricks:

I if possible, calculate in advance and store in tables for subsequent fast
interpolation (good, e.g., for dynamical simulations);

I use efficient statistical scheme rather than straightforward integration;
I use localized basis functions which allow analytical (or otherwise easy)

integration (Gaussian basis sets).
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Frozen phonon in a supercell

How to obtain real-space force constants F ijαβ:

or, Fourier-transformed ones F ijss′(q):

A.Postnikov (Université Metz) atomic vibrations June 2010 13 / 34



Frozen phonon in a supercell

Γ phonon in a supercell scans different q values:
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MD.TypeOfRun FC: Siesta phonon trivia

Crucial information for constructing the dynamical matrix is accumulated in
the .FC file. These are forces/displacements, namely −[Fαi (R + dβj )]/dβj :
minus force induced on atom α in the direction i, as atom β is shifted by d
from its equilibrium position R along j. The units are eV/Å2. The default
value of d (MD.FCDispl) is 0.04 Bohr.

The writing order: external loop over N1 atoms of the inner (single) cell;
each atom undergoes 6 displacements (by the value of d), in the sequence:
−X,+X,−Y,+Y,−Z,+Z. The forces are registered over N2 atoms of the
supercell (generated by fcbuild). After each displacement, the −F/d values
are written in a block, one line per atom in N2, containing three Cartesian
coordinates of the force. Hence the full number of lines in the .FC file is
N1×N2×6+1 (header line); for the calculation of Γ phonon N2 = N1.

On crash, the calculation can be restarted from the atom whose six
displacements have not been finished. This might involve re-defining the
MD.FCfirst, MD.FClast parameters and removing the lines of unfinished
6×N2 block in the cumulative .FC file. Displacements of different atoms are
completely independent and can be spread over machines.
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Vibra input annoyances

Different format of coordinates input in Siesta
block AtomicCoordinatesAndAtomicSpecies:
From ia = 1 to natoms
read: xa(ix,ia), isa(ia)

where xa(ix,ia) is the ix coordinate of atom iai, and isa(ia)

is the species index of atom ia (+ masses in separate block)

and in Vibra
block AtomicCoordinatesAndAtomicSpecies:
From ia = 1 to natoms
read: xa(ix,ia), isa(ia), xmass(ia)

where xa(ix,ia) is the ix coordinate of atom iai, isa(ia) is

the species index of atom ia, and xmass(ia) is the atomic

mass index of atom ia.

AtomicCoordinatesFormat is much more strict in Vibra.

OK, ça va...
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The Siesta way to phonons

Γ-phonon only:

I in the conventional unit cell, apply 6 displacements (±x, y, z) to EACH
atom (consecutively or in parallel). Use block MD.TypeOfRun FC.
Collect the force constants in the .FC file.

I Run Vibra. Provide in its input file
%block BandLines
1 0. 0. 0.

%endblock BandLines
I Enjoy the results.

ω(q) dispersions:
I Construct a large enough supercell to ensure sufficient attenuation of

real-space force constants within it. Use fcbuild for this.
I Run Siesta on thus generated supercell with MD.TypeOfRun FC.

Collect the force constants in the .FC file.
I Figure out which directions in the q-space you want to explore. Add

corresponding definitions in the %block BandLines.
Run Vibra. Enjoy the results.
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The hard Siesta way to phonons: Γ phonon

Before doing a big calculation of phonon dispersions (on a supercell), run a Γ
phonon on a single cell. It may save you some trouble. What to look at:

There must be THREE acoustic modes with |ω|≤0.1 cm−1. If not, you have
problem with insufficient MeshCutoff. Go and fix it first.

All other modes must have POSITIVE frequencies. If some are NEGATIVE
(in fact, imaginary, i.e., ω2 < 0) ones, this indicates bad initial lattice
relaxation (the atoms displaced not from equilibrium). Repare as follows:
Take the LOWEST (the most negative) of these modes. Displace the atoms
slightly along their respective components in the eigenvector of this phonon
(e.g., with the help of vib2xsf). This MUST reduce the total energy. As you
don’t know in which sense to displace, try both. From whichever
displacement yields lower energy, start new (better) structure relaxation.
Then calculate phonons anew.

You have three zero modes and none negative. However, the “good” modes
are not where they are supposed to be. As the last resort, check THE
ATOMIC MASSES you provided to Vibra. If nothing helps, that’s where the
real work starts: was it pseudopotential? Was it basis? ... ?
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The hard Siesta way to phonons: ω(q) dispersions

Suppose the problems described in relation with Γ phonon do not occur.

The next sensitive issue, in what regards calculating dispersions, is the
localization of force constants. This is done by choosing sufficiently large
supercell in fcbuild, setting SuperCell 1,2,3. Increasing them uniformly
ultimately enforces such localization, but underway the size of the
generated supercell – 1, 27, 125, ... for SuperCell ? = 0, 1, 2 –
may explode your computer.

A suggestion:
Enlarge the supercell size only along the direction(s) along which (i.e.
along whose reciprocal-space counterparts) you REALLY care about
dispersion. Then you’ll have a “linear scaling” in supercell size:
1, 3, 5, ... for SuperCell i = 0, 1, 2.
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The hard Siesta way to phonons: ω(q) dispersions

Siesta+Vibra calculation of phonons in InN under pressure
for 3×3×3 = 27 supercell (left) and 5×5×1 = 25 (right)
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Extracting phonon density of states (case Zn1−xBexSe)

Γ point only + large enough supercell
⇒ density of modes I(ω).

How it works (use phdos):

Iℵ(ω) =
∑
α∈ℵ

∑
i

|Aαi (ω)|2 ;

Aαi (ω): eigenvectors,
ℵ: selected group of atoms.

Vibrational density of states for the
Be6Zn26Se32 supercell, resolved over
different groups of atoms, calculated
for q=0 of the supercell and broadened
by 10 cm−1. The vertical scaling for
different groups is arbitrary.
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Phonon spectral function

Iℵ(ω,q) =
∑
i

∣∣∣∣∣∑
α∈ℵ

Aαi (ω) exp(qRα)

∣∣∣∣∣
2

Aαi (ω): eigenvectors,
ℵ: selected group of atoms

(also implemented in phdos).

The additional (Be-chain)
mode is mostly pronounced
for q=0;

dispersion features are well
seen for ZnSe sublattice.
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Be0.33Zn0.67Se: phonon dispersion

Be32Zn64Se96 supercells

quasirandom generation
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Be0.33Zn0.67Se: phonon dispersion
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Vibration patterns (generated with vib2xsf)

of selected modes with substantial contribution of the chain Be atoms.
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Phonons in bulk dielectics

in polar dielectrics, a difference in the force constants affecting transversal
and longitudinal modes arises due to the onset of macroscopic polarization
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Phonons in bulk dielectics

Dynamical matrix depends on the presence of macroscopic polarization:

Dij
αβ(q → 0) = Dij

αβ

[analytical]
(q = 0) +Dij

αβ

[non−analytical]
(q → 0)

=
F ijαβ√
MαMβ

+
4π
Ω

1
√
mαmβ

(∑
k

qkZ
∗
α,ki

)(∑
k′
qk′Z∗β,k′j

)
∑
kk′
qk ε
∞
kk′ q′k

;

Z∗α,ij =
∂2E

∂Ei∂Rαj
: Born effective (dynamical) charge (tensor).

ε∞: high-frequency (from the point of view of phonons) dielectric tensor,
i.e. zero-frequency (from the point of view of electrons) one.
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Phonons in bulk dielectics: Born effective charges

Calculated Born effective charges in SiO2

[Umari et al., PRB 63, 094305 (2001)]:

Z∗Si =

 3.021 0 0
0 3.671 −0.224
0 0 3.450

 ; Z∗O =

 −1.413 0.564 0.505
0.519 −1.915 −0.615
0.447 −0.648 −1.715

 .

Anomalous Born effective charges in ferroelectrics, e.g. KNbO3

[Wang et al., PRB 54, 11161 (1996)]:

Z∗Nb =

 8.16 −0.35 −0.35
−0.35 8.16 −0.35
−0.35 −0.35 8.16

 ; Z∗O =

−6.27 0.14 0.14
0.24 −1.55 0.00
0.24 0.00 −1.55

 .

reveal strong polarizability of the coresponding bonds.

Macroscopic polarization, calculation of Born effective charges
are implemented in Siesta. A corresponding private version of Vibra,
designed for calculation of LO phonons, is around.
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Linear response

The Kohn-Sham equation[
− ~2

2m
∇2 + VSCF(r)

]
ϕi(r) = εi ϕi(r) ;

VSCF(r) = e2
∑
α

−Zα
|r−Rα|

+ e2
∫

ρ(r′)
|r− r′|

dr′ +
δEXC

δρ(r)
;

ρ(r) =
∑
i

(occupied)

|ϕi(r)|2

is linearized, introducing small parameter λ:

ϕi(r) = ϕ
(0)
i (r) + λϕ

(1)
i (r) ;

VSCF(r) = V
(0)

SCF(r) + λV
(1)

SCF(r) .
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Linear response

[
− ~2

2m
∇2 + V

(0)
SCF(r)− εi

]
ϕ

(1)
i (r) = −V (1)

SCF(r)ϕ(0)
i (r) ;

(Sternheimer equation)

V
(1)

SCF(r) = e2
∑
α

Zαwα(r−Rα)
|r−Rα|3

+ e2
∫
ρ(1)(r′)
|r− r′|

dr′ + ρ(1)(r)
[
dVXC(r)
dρ

]
ρ(0)

;

ρ(1)(r) = 2 Re
∑
i

(occupied)

ϕ
(0)
i

∗
(r)ϕ(1)

i (r) .

“Perturbation” λwα: e.g., a phonon q with polarization A,

wα = AeiqRα + A∗e−iqRα .

A good review: Baroni et al., Rev. Mod. Phys. 73, 515 (2001).
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Molecular dynamics

Verlet algorithm: r(t+ δt) = 2r(t)− r(t− δt) + (δt)2
F(t)
M

Velocity autocorre-
lation function:

Cv(τ) =
1
N

N∑
i=1

1
tmax

tmax∑
t0=1

[vi(t0) · vi(t0 + τ)]

Vibrational density
of states:

I(ω) = |G(ω)|2 ,

G(ω) =

∞∫
−∞

dτ Cv(τ)e−iωτ
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MD simulations for small clusters

velocity autocorrelation function

A.Postnikov (Université Metz) atomic vibrations June 2010 30 / 34



MD simulations for small clusters

Vibrational DOS extracted from MD
simulations for bulk TiC (8-atom super-
cell, thick line in the top panel), Ti4C4

cluster (thin line in the top panel) and
the Ti14C13 cluster (bottom panel).

Postnikov and Entel, Phase Transitions
77, 149 (2004).
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Molecular dynamics vs. frozen phonons

(+) anharmonic effects automatically included

(+) straightforward treatment of temperature effects
(e.g., Nosé thermostat)

(±) total simulation time is limited from below by frequency resolution,

tMD run ≥ 1/(∆ν) ;

simulation time step is limited from above by the highest characteristic
frequency,

∆t� 1/νmax. ,

⇒ many simulation steps needed, but for large systems one may be better

off than trying all displacements as in a frozen phonon calculation).

(−) at low temperatures – mostly harmonic behaviour, poor ergodicity.
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Conclusions

Be careful in checking the accuracy of calculation (cutoffs, basis, ...)
before engaging in a big phonon project. Remember, you’ll only get
result when ALL elements of the dynamical matrix will be
accumulated!

The accumulation of force constants is the most efficiently
parallelizable operation in Siesta – unfortunately, only by hand...

Consider molecular dynamics as a method worth consideration for
getting phonons, if your system is large, and especially if you
accumulate the MD trajectories anyway.

Once you got phonons, do not be satisfied with just frequencies; get
the best you can from the eigenvectors.

If comparison with experiment desperately fails despite all efforts, it
must have been anharmonicity !-)
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