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Basic objects of Normaliz

The basic objects that constitute the input of Normaliz are:

C, a finitely generated rational cone in Rd

L, a sublattice of Zd

Normaliz computes the monoid

M D C \ L

It is finitely generated by Gordan’s lemma.

Normaliz has applications in commutative algebra, toric geometry,
combinatorics, integer programming, invariant theory, elimination
theory, mathematical logic, algebraic topology, theoretical physics

Recent extension: P \ L where P is a rational polyhedron
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Platforms and systems

Normaliz (present public version 2.10.1) is written in C++ (using
Boost and GMP/MPIR), parallelized with OpenMP, and runs on

Apple

Linux

MS Windows

Access to Normaliz from (partly via libnormaliz)

Singular (library by WB and Christof Söger)

Macaulay 2 (package by Gesa Kämpf)

CoCoA (via library interface; John Abbott, Anna Bigatti, Christof
Söger)

Sage (optional package by Andrey Novoseltsev)

polymake (polymake team)

Regina (for 3-manifolds, by Benjamin Burton)

GUI interface jNormaliz (by V. Almendra and B. Ichim)
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Input to Normaliz

Cones C and lattices L can be specified by

generators x1; : : : ; xn 2 Zd ,

constraints: homogeneous systems of diophantine linear
inequalities, equations and congruences,

relations: binomial equations.

Input for 3x3 magic squares with even corners:

7 9 4 10

1 1 1 -1 -1 -1 0 0 0 1 0 0 0 0 0 0 0 0 2

1 1 1 0 0 0 -1 -1 -1 0 0 1 0 0 0 0 0 0 2

0 1 1 -1 0 0 -1 0 0 0 0 0 0 0 0 1 0 0 2

1 0 1 0 -1 0 0 -1 0 0 0 0 0 0 0 0 0 1 2

1 1 0 0 0 -1 0 0 -1 
ongruen
es

0 1 1 0 -1 0 0 0 -1 1 9

1 1 0 0 -1 0 -1 0 0 1 1 1 0 0 0 0 0 0

equations grading
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The tasks of Normaliz: Hilbert bases

Normaliz computes (together with other data)

Hilb.M/; M D C \ L

where Hilb.M/ is the unique minimal system of generators of M .
(Standard asumption: C is pointed.)

Important variant: lattice points in polytopes.

Algoritms (choice left to the user):
the primal original Normaliz algorithm
(based on pyramid decompositions
and triangulations)
the dual algoritm, a variant
of an algorithm due to Pottier
(of type pair completion)

0
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The tasks of Normaliz: Hilbert series

A grading on M is a surjective Z-linear form deg W gp.M/ ! Z such
that deg.x/ > 0 for x 2 M , x ¤ 0

The Hilbert (or Ehrhart) function is given by

H.M; k/ D #fx 2 M W deg x D kg

and the Hilbert (Ehrhart) series is

HM.t/ D

1
X

kD0

H.M; k/tk :

0
Algorithm: Stanley decomposition of monoid

Theorem (Hilbert-Serre, Ehrhart)

HM.t/ is a rational function

H.M; k/ is a quasi-polynomial for k � 0
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Extension I: Hilbert series of semiopen cones

A semiopen cone is given by

C0 D C n F

where C is a cone and F is a union of faces (not necessarily facets)
of C. Set M 0 D C0 \ L

The task is to compute the Hilbert function

H.M 0; k/ D #fx 2 M 0 W deg x D kg

encoded by the Hilbert series

HM0.t/ D

1
X

kD0

H.M 0; k/tk :

0
Typical application: mixed systems of homogeneous inequalities and
strict inequalities
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Algorithmic variant: approximation of rational polytopes

Huge determinants of simplicial cones can be a severe problem in
the Normaliz primal algorithm even when computing lattice points in
rational polytopes P. Vertices of an “innocent” polytope:

2 6 3 4 3 6 2 6 3 4

2 -3 3 -2 3 -3 2 -3 3 -2

4 -6 -3 14 -3 -6 7 -6 -3 8

4 3 -3 -7 -3 3 7 3 -3 -4

14 24 -6 -14 -33 -30 -7 6 39 28 determinant 416,728,074,151,872
14 6 -33 -14 39 24 -7 -30 -6 28

14 -30 39 -14 -6 6 -7 24 -33 28 44 lattice points
14 15 12 7 3 -3 -7 -12 -15 -14

14 -3 -15 7 12 -12 -7 15 3 -14

14 -12 3 7 -15 15 -7 -3 12 -14

denominator: column 1

A way out: approximate P by a lattice overpolytope Q , compute its
lattice points, and select those in P.
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Extension II: Polyhedra

Let P � Rd be a rational polydron (with vertices). There are two
ways to describe it:

P is the intersection of finitely many rational affine halfspaces

P D Q C C where Q is a rational polytope and C is a rational
cone.

Since Q is the convex hull of finitely many points and C is finitely
generated, P has a description by finitely many generators. We call
C the recession cone.

One of the tasks of Normaliz is the conversion between both
descriptions (like in the case of cones).

An affine lattice L is a Minkowski sum x C L0 where x 2 Zd and
L0 � Zd is a sublattice.
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Lattice points in polyhedra

Let P D Q C C be a rational polyhedron, L an affine lattice and
N D P \ L:

Proposition

There exist x1; : : : ; xm 2 N such that

N D .x1 C .L0 \ C// [ � � � [ .xm C .L0 \ C//;

and x1; : : : ; xm are uniquely determined if the union is irredundant.

We call x1; : : : ; xm the minimal system of generators of N.

Polyhedra C and affine lattices L can be specified by

generators, integer vectors generating C and rational vertices of Q

constraints: inhomogeneous system of diophantine linear
inequalities, equations and congruences
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Polyhedra: tasks of Normaliz

Normaliz computes

the Hilbert basis of C

the minimal system of generators of N

Furthermore, when a grading is given:

the Hilbert series HN.t/ D
P

k2Z
H.N; k/tk

Input for the interior of a cone in dimension 24:

1 24

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

stri
t_signs

3 24

1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 1 1 -1 -1 1 -1 1 1 -1 -1 1 -1

1 1 1 1 1 1 1 1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 1 1 1 -1 -1 -1

1 1 1 1 1 1 1 1 1 -1 -1 -1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1

stri
t_inequalities
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Extension III: NmzIntegrate

NmzIntegrate is an executable of its own, but uses data produced by
Normaliz. It is based on CoCoALib (A. Bigatti, J. Abbott).

NmzIntegrate computes

integrals
Z

P
f .x/ dx

of polynomials f 2 QŒx1; : : : ; xd � over rational polytopes P � Rd

generalized (weighted) Ehrhart series

HM;f .t/ D
X

x2M

f .x/tdeg x

where M D C \ L as above (also in the semiopen case)

HM;f .t/ is again a rational function.

Winfried Bruns Recent extensions of Normaliz



Example: an integral

A recent paper of Jeffries, Montaño and Varbaro asks for the
computation of

Z

Œ0;1�m
P

xDt

.x1 � � � xm/n�m
Y

1�i<j�m

.xj � xi/
2dx D

27773

29515186701000

Result for m D 4, n D 6, t D 2 with input:

8 0 0 0 1 0 1

5 -1 0 0 0 1 5

1 0 0 0 0 0 -1 0 0 1 -1 -1 -1 -1 2

0 1 0 0 0 0 0 -1 0 1 equations

0 0 1 0 0 0 0 0 -1 1

inequalities

(x[1℄*x[2℄*x[3℄*x[4℄)^2*(x[1℄-x[2℄)^2*(x[1℄-x[3℄)^2*

(x[1℄-x[4℄)^2*(x[2℄-x[3℄)^2*(x[2℄-x[4℄)^2*(x[3℄-x[4℄)^2
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Example: A generalized Ehrhart series

Typical application of generalized Ehrhart series: Instead of counting
lattice points in a high dimensional monoid one counts them in a low
dimensional projection, but each with its number of preimages.

Can be applied to combinatorial voting theory, for example to the
Condorcet paradox for 4 candidates (A. Schürmann). Instead of
computing in Dimension 24 one can work with the projection:

1 3

8 8

1 1 1 1 1 1 1 1 1 -1 1 1 1 -1 -1 -1

signs 1 1 -1 1 -1 1 -1 -1

1 1 1 1 -1 -1 -1 1 -1

8 ex
luded_fa
es

1 1 1 1 1 1 1 1

grading

f .x/ D

 

x1 C 5

5

!

.x2 C 1/.x3 C 1/.x4 C 1/.x5 C 1/.x6 C 1/.x7 C 1/

 

x8 C 5

5

!
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NmzIntegrate: methods

Integrals are computed by classical approach:

triangulation of polytope P

transformation of each simplex to the unit simplex

explicit formula for the integration of a monomial over the unit
simplex:

Z

�

ym1
1 � � � ymd

d d� D
m1Š � � � md Š

.m1 C � � � C md C d � 1/Š
:

Ehrhart series use a completely analogous approach:

Stanley decomposition of the monoid

transformation to Zd
C

(the monoid over he unit .d � 1/-simplex)

Fubini type reduction to d D 1

powers of the geometric series in d D 1
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Outlook

algorithmic improvements

improvement of input and output

massive parallelization

reusability of partial results

intelligent choice of integer type and algorithm

exploitation of symmetries

Graber bases

multigraded Hilbert series
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